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Abstract:

Two new fractional entropy functions, first, based on extension of
Ubriaco and Shafee approach, and second, the generalization
through the use of concept of expansion of linear fractional
distributed order derivative, is proposed. The first entropies are the
two-parametric functions. The second entropy is a linear
combination of the above functions. Then they have the same
properties as the Shannon entropy except additivity. For q;, q2 €
(0,1], these entropies satisfy the third law of thermodynamics in
the Bento sense, and, for q; < 1 and q, > 1, the Lesche stability
criteria.

Keywords: entropy, fractional calculus, Lesche stability, third law
of thermodynamics.

1.Introduction:
Statistical entropy is a measure of the number of possibilities or
randomness available to a system, and assumes it is minimally
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zero when the system is in a given state and maximal value when a
system can be in a number of microstates randomly with equal
probability, with no uncertainty in its description. Thermodynamic
entropy, as opposed to the previous, should describe the system as
a whole, and not just one of its microscopic parts. Over the past
three decades, there has been a lot of interest in generalizing the
Shannon entropy and exploring the consequences of applying these
new concepts in several scientific fields [1] to [6]. For the new
entropy functions are considered properties characteristic for the
Shanon entropy: non-negativity, additivity, monotonicity and
continuity, extensivity, convexity, stability, and, particularly,
whether they conform to the third law of thermodynamics [7] and
[8].

As a consequence of the mentioned, central tendency to the
development of the statistical mechanics of systems is the
definition of the free energy. The existence of this function is the
result of normalization of the probability distribution function,
which in turn controls the behaviour of all the macroscopic
properties of the ensemble. The majority entropy functions depend
on an additional parameter ¢ and become the Shannon entropy
function when this parameter takes the value g = 1.

These generalizations mostly could be non-extensive and opening
the possibility for applications to systems with long range
interactions between macroscopic parts and non-additivity of
energies on macroscopic scales.

The concept of derivative or integral operators is traditionally
associated to an integer in terms of the number of applications to
the given function. The main idea is to examine the properties of
the ordinary derivative and see where and how it is possible to
generalize the concepts to the fractional operators.

Precise mathematical formulation of basic fractional calculus (FC)
or its many applications are given in [9] and [10]. Several
problems in mathematical physics and engineering have been
modeled via distributed order fractional calculus (DOFC) [11] to
[14].

In FC frequently used left Riemann-Liouville, Caputo or Weyl
fractional derivatives. Using them determined appropriate
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distributed order fractional operators. They are known expressions
for entropy inspired in the properties of basic FC[5] to [7].

Order of derivative operators is a strong connected to parameter g.
In the statistical mechanics, the main motivation to propose new
entropies to be able to describe phenomena that lie outside the
scope of the Boltzmann—Gibbs formalism.

In the present paper, we introduced a new entropy function based
on generalized linear DOFC. For that porpuse is notice that the
Shafee entropy [3] and the Ubriaco entropy [5] can natural
generalize into two-parameter concept. After that, considers
properties of expansion mentioned two-parameter entropy through
their specific linear combinations.

Letter is organized as follows. In section 2, introduced, some
necessary definitions and mathematical preliminaries of FC. In
section 3, derived the new entropy functions in the spirit of the
standard FC. In section 4, described some properties of this
entropies. Finally, section 5 outlines the main conclusions.

2. Preliminaries and notations:

In the literature exists various definitions of fractional and
distributed order derivatives. One of these definitions of a
fractional and distributed order derivative is the Weyl definition.
The Riemann-Liouville fractional derivative of order ¢ is defined
as [9] and [10]

1 d" t'
(RLD[qf)(f)::me’dt'-(t_ft(#L, n—-l<qg<n, neN. (1)

If a = - o, (1) called Weyl’s fractional derivative. If Re (A) > 0,
for Weyl’s fractional derivative valid relation:

L DM = A1, @)

The distributed order derivative based on the Weyl’s
derivative[10] and [12], if exists, is:
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(,D5)() :{qu'-A(q')WDf'f)(f). ®

Both defined fractional derivative operators are linear. Sometimes,
as in [13], used additional conditions, e.g. for (3), A(¢’) is a non-
negative function.

3. Establishing to the new entropy concept:

The Tsallis entropy observation can be defined from the equation
[1] and [4] to [15]

$=lim DY @
Opened the possibility to define new entropy functions [16].
Where the operator D' , is called the Jackson g-derivative [17]
defined as

d
1— q dt

l-q
Parameter ¢ have a real values and sometimes called entropic
index, p; is the probability.
The equation (4) usually written in the form

()

|
D=t

Sq:ﬁ i(piq_l)

In the limit g— 1 the Shanon entropy recovered. To the best author
knowledge, Rénya entropy [2] has not yet been written in the form
of some type of differential calculus. The most studied
generalization of the Shannon entropy, however the Rényi entropy
and the Tsallis entropy.

Ubriaco [5] proposed entropy functions based on FC which has a
physical sense [7]
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S :=lim Dqu”“p 0<g<l. (6)

t—>—1

In another form Eq. (6) can be written as follows
s=2n (=In(p,))’ (7)

Settlng t — b and, if defined two-parameter fractional derivative
operator ,, Df f(b) :=1inl}WDf f(z), then the new and direct
t—

generalization of the Eq. (6) is

Sya [P]= ( D Zeq‘ ) (8)

That the entropy becomes the function

Sy LP]= Zp (~In(p,))". )

Where, Sql,qz[p]=ZSi’ql’qz[p]=Zqiql’qz(pi) is a continuous

positive non-additive function. If ¢; = ¢ and ¢, = 1, then (9)
described the Shafee entropy function [3].

One interpretation for his entropy function considered fractional
values of cell numbers ¢ (a fractional size of the register) with the
probability that the whole “new phase space” is occupied by the
given letter - p;?. The introduction of fractional values of cell
numbers can be taken in the same spirit as defining the fractal
(Hausdorff) dimensions of dynamical attractors and in complex
systems [18] and [19].

According to construction, in this form, the new entropy function

S, o, represents the final result, within the specified FC and

constraint equation. An extension of this function it is possible
inside the framework of ideas of DOFC. In this sense, using the
definition given by equation (3) and, if exists, the new fractional
derivative is given by the equation:
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L2 . (10)
(WDif)(t) = I d% 'J d% "A(% 4, ') WDiI;I'f (_% ')-

0+ 0+

If +—o0 and substituting A(g,',q,")= 5(g,'~¢)4(g,') in (10) obtained
(3). (o(x) is the Dirac delta function), and, for
A9,".4,")=5(¢,~4,)5(¢,'~4,), 41 < t, obtained equation (9).

The new distributed order derivative based on the Weyl’s
derivative.

The equation (10) is a linear operator. Therefore, for +—o0, new
main entropy is given by the equation:

S[p] = qul 'J. dq2 V.A(ql "QZ ')WDgf];'Zeqlulnpi.

0+ 0+

(11)

The physical sense of the definition of (11) is that they are
describing multifractal or more complex systems.

A (q1, q2) 1s a function or distribution. It will be shown in the next
subsection that it can, under some certain conditions to realistically
modeling natural processes.

3.1. Some properties one class of the entropy functions:
The model of entropy that is being considered in this section is
given by the equation:

S[p]= T dg, T dg," A(q,.4,")Y. P -(-In(p,))" ,

0+ 0+ i

(12)

where S[p] is a strictly positive function and A(g,',¢,")=0.

All functions shown features of S[p], also are valid in the discrete
case:

My My (13)
A(ql 4, ') = ZZA(qlkaQ2z)5(Q1 '_Q1k)5(% '_%1)-

k=1 I=1

The coefficients in (13) satisfies the inequalit A(q1 i q2,)> 0Tt is
clear that from the condition:
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aSiaqlqu [p] — 0 (14)

p;

_ %
St dn [p] has a maximum at p, =—e “ with a second derivative at
this point given by:
,-1

azsi,ql,qz [p] B _Z_?(ql_2) 4, q (15)
— | .= e = -

apl pi=—e q1 ql

Therefore, function given by (12) has at least one maximum.

The reasons for this are, except continuity, concavity and positivity
ofg, .. (p,).are:

(1) minimum Dy [p, >0]—0
) minimum 4, .[p, >1]—0
(3) 4(g,".4.)=0.

In particular, the binary entropy:
S;)li?qz = p (—1np)q2 +(1_p)q1 (—ln (l—p))qz (16)

It has a maximum at p = 0.5.

The same is true for S[p]z Sbi”[p]. As expected, by definition,

S[p] is non-additive function. This function is concave, as a non-
negative linear combination of concave functions. Based on the
statistical-thermodynamic principles, the probability distributions
can be obtained by maximizing the corresponding entropy function
S ql’qz[p] [7] (under the constraints X; p; =1 and X; p;&;=FE , E is

the internal energy of the ensemble per constituent, &; is the i-th
state energy ), subject to constraint equation:
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L.,=S,. [p]+a(l—2pij+ﬂ(]5_zgipij (17)

Where a and S are the Lagrange multipliers associated with the
normalization of the pdf’s p; and the conservation of energy, such

that setting —~= =0, leads to the equation:
ap;
¢ql,qz '(pl.)=01+,88[ (18)

with the solution ¢, (pl. )= (a + e, )pl.. Hence we get the relation
for the pdf
pi = l//’hsqz_l (ﬂ(gi _A)) (19)

with the definition:

20)
Y44, (p) = ¢%#sz[))

The function A=-0/f is the Helmholtz free energy and the
equation for ¢, '(p) is:

¢‘11’q2 '(p):pql_l (_l‘np)qz_1 (_ql lnp_qz) (21)
For (19) we assume that the function y, , (p;) can be inverted.

In the case of the equation (9) for entropy function, the equation
(19)is

9> Aw(((l_ql )q,%/a-}-Tgl)]

~ 92 (22)
p.=e (1_41)
The function W=W(z) called Lambert function, defined by:
W(z)eW(Z) =z. (23)
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If g=1 and g,=¢q, the equation (22) replace the appropriate relation
in [3].

Solving the similar problem given by (12) is much more
complicated and will be subject to the following papers. The study
of the stability properties of entropy functions is one of the
important issues that need to pay attention to many works. In the
framework of the above, Lesche, in a pioneering Articles [20] and
[21], proposed a criterion to study the stability of the Rénya
entropy function [2].

ln(Zpiqj
o _\4 (4)
q l_q

Lesche’s main result is that the Rénya entropy is unstable for every
value of the ¢ parameter with the exception of 1 (Shanon entropy).
The basic motive for existence of this type of stability is to check
whether existence of quantitative sensitivity to changes when the
probability assignments p on a set of n microstates is perturbed by
an infinitesimal amount Jp. To some generalizations of the
Shannon entropy, these criteria have already been applied, [22]
and [24]. Authors in the [23] derived a simple condition from
which Lesche stability can be addressed. Let p and p’ be two
probability assignments. Can be shown that Lesche stability is
satisfied if :

S, . (p :g)m_axsq_qz (p)| < CZHI|PJ- o) (25)
=1

q,-9

Where the constant C is given by:

o #(00)-()
$'(0+) - [di-¢(c) (26)
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Correct values for constant C are real numbers without zero. If g; <
1 and g, > 1 for (26) valid limit:

(= lim ¢'([) =],
= I(1+q,)—q¢.I'(q,) (27)
¢ (f)_ qilz
1

Still, it should be mentioned the following.
In [25] provide a counterexample to show that the generic form of

entropy S[p]:zlyﬁ(pi) is not always stable against small

variation of probability distribution - Lesche stability even if ¢ is

concave function on [0,1] and analytic on (0,1].

Nevertheless, entropic function given by the (9) in certain cases
satisfies the third law of thermodynamics, which is demonstrated
in the similar as in [7] and [8]. Since it should be satisfied for any
suitable entropy expression independent of the Hamiltonian, the
third law of thermodynamics has been introduced as a test for the
generalized entropies [8].

In the statement [8] is to express this law in the terms of micro-
probabilities by assuming that the physical system has ordered
microscopic energies ¢; where i = 0, 1,.., N, with no degeneracy.
Then, f; is the contribution of the /-th energy level to the inverse
temperature /3

-1

oS | oF

B=—|—1, (28)
op; \ op;

Where f = %; f;. As suggested in [8], the third law dictates certain
divergence of temperature, occurs if and only if when the entropy
vanishes. When {p;} — 0, > 0, as pp = 1 showing that only the
ground state is occupied while all the other states are not (py = 1-
pj)- This case is one check for the third law. Similar to the
statement [7], using the equation (9), expression for first derivative
bypj Oqu],qgi :
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16 = 01 = -1

#wﬁ (-inp,)" (-gInp,-q,)-pi™ (-Inp,)"" (g, lnp,-q,)  (29)
j

Which is in the form of (29). Nevertheless, the system energy

given by:

OFE

p, (30)
J

The final relation for f; is:

_ g1 _ -
B, o) (e -a) g (inp)* (g hp,-g,) (31)

£;-& €8,

Having substituted py = 1, is obtained by:

lim B = lim 2 #(~lnp,)* (~¢,Inp, ~q,) )

J
Pj—’O pj—>0 gj _go

00 = 00 (32)

For g;, ¢, € (0,1], taking into account the equation (32), in the
form “oo + 00”, asin [13].

Also holds, if ¢; > 1, then equation (32) diverges to o, but, in the
form “0 + o”. For the Lesche stability limitations is the
characteristic form “oo + 0”. Author required first result on the
right side of the equation (32) as the correct: ¢;, ¢g> € (0,1].
Exists, however, some problems. For instance, Bento et al in [7],
by their discussion, are not explicitly considered systems that have
long-range interactions, and this represents a justifiable limitation
of the previous review. In conclusion, constraints for parameters ¢,
and ¢», derived from the third law of thermodynamics, the Lesche
stability or analogous, may corrected boundary values of the
integration in the equation (12).

5. Conclusions:

442 Copyright © ISTJ A gine qohall (3 g8a
4l 5 o slall 40 gall Alaall



25 ) Ty p ghatd A A

Rrtcmrn e Tasfimabings domrnal

I Vomes IR

International Science and

This paper presented a generalizations of the concept of entropy
inspired in the properties of (FC). Within context of the new (FC),
defined a two new entropy functions. These new entropies are
concave, positive definite, non-additive, for given set of values of
two parameters satisfies Lesche stability and the third law of
thermodynamics. Probability distributions based on the Lambert
function obtained by maximizing the first entropy function
together with the appropriate constraint equation. The method
presents in this study can be used for direct generalization of the
Tsallis entropy -equation (4). However, the Tsallis entropy easily
described using the equation (12). According to the author, it is
possible to assume that over a can express the entropy for which
there are for now no fractional derivatives, as the Rénya entropy -
equation (24). Therefore, can be appropriate to ask the following
question: whether the equation (12) or similar, a generally enough
to include all physically acceptable, the current entropic functions?
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