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Abstract 
 A new mechanical framework is introduced to describe bodies with time-continuous mass 
variation, incorporating a functional dependence on mass. In this approach, the dynamics 
are governed by momentum balance equations formulated using Caputo fractional 
derivatives, which adhere to a weak form of Galilean invariance. The formulation is 
particularly focused on the Meshchersky kinetics, accounting for both mass and velocity 
changes. As a practical example, this paper presents a novel model for the motion of a 
material body with continuously varying mass in a constant gravitational field—leading to 
a time-fractional version of the Tsiolkovsky rocket equation, augmented by a dissipative 
term. Under time-based approximation, deviations from vertical projectile motion are 
analyzed to assess the internal consistency of the proposed model.  
Keywords: Variable-mass dynamics, Meshchersky equation, Tsiolkovsky rocket equation, 
Caputo fractional derivative  
 
Introduction  

 During about fifty years or so, fractional calculus has attracted much attention due to its 
application in various fields of science and engineering. For various applications of 
fractional calculus in physics, mechanics etc., see [1-3] and references therein.  
Two types of fractional derivatives or integrals, namely Riemann-Louville and Caputo 
derivative (both), are basics. Among other things, the Riemann-Louville fractional 
derivative of a constant is not zero, and it requires not generally specified fractional initial 
conditions. In contrast, Caputo derivative of a constant is zero, and a fractional differential 
equation expressed in terms of Caputo fractional derivative requires similar to standard 
boundary condition This is one of the reasons, why physicists or engineers prefer Caputo 
fractional derivative. In this 22  
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regard, are important papers [5-7]. In the work [S] investigated a failing body problem 
through the air in view of the fractional derivative approach, it has been demonstrated that 
using a dissipative term proportional to velocity is possible to use the Caputo derivative. 
Paper [6] contains general discuss about the fractional mechanics, where the time 
derivative is replaced with the fractional derivative, in the many cases: the motion of a 
body in a resisting medium where the retarding force is assumed to be proportional to the 
fractional velocity, also, fractional damped oscillator problem, the fractional harmonic 
oscillator problem, fractional forced oscillator problem etc. Authors in [7] carefully 
considered an improved version of the Boltzmann-Poisson model for BaTiO₃-Ceramics, 
lead to correct fractional relaxation meso mechanical velocity description in the case of 
time correlations. It is known that the classical mechanics is built upon the two concepts: 
inertial reference frames and Galilean invariance [8]. For materials described in the papers 
[5-7], the above mentioned does not have to be true [9]. In [9] starting from the Kac-
Zwanzig Hamiltonian model generating Brownian motion, showed how Galilean 
invariance is broken during the coarse graining procedure when deriving stochastic 
equations, leads to a set of rules characterizing systems in different inertial frames that have 
to be satisfied by general stochastic models, which the authors have called weak Galilean 
invariance. In papers [S] and [7], phenomena, which are described, by construction, are 
within such a model.  
Part of the mechanics, which describes the motion of the variable mass body, is a well-
known [10], [11], [12]. In work [12] the Meshchersky equation is obtained on the basis of 
the equations of motion of mesoscopic particles. This premise led to the emergence of the 
components of acceleration connected with the internal processes in the body. However, 
neither the spatial nor temporal correlation of the corresponding physical processes was 
considered. In this paper, new mechanical variable-mass dynamics description of the body 
with time correlations continual functional dependence is considered. By assumption, in 
this case, dynamics of momentum balance described by Caputo fractional derivatives, 
which satisfy weak 33  
 



UtilitasMathematica 

ISSN 0315-3681 Volume 122 (2), 2025 

 

1787 
 

Galilean invariance. Within this description, independently considering the kinetics of 
body velocity and mass.  

Especially important is so called the Tsiolkovsky rocket model. For a Caputo 
fractional velocity failing body problem through the air, with dissipative term, in this paper, 
we study new Caputo fractional continual mass dynamics - the fractional Tsiolkovsky 
equation. The appropriate relation of balance of momentums is used. Thus the fractional 
Tsiolkovsky equation, in a special case, describes generalization of the model to the body 
moves in the neighborhood of the Earth's surface in the gravitational field, with constant 
velocity of separation of a certain mass and mass of the body decreases linear in the course 
of time [10], pp.110-113, in the case of weak dissipation. Within the time approximation 
of the body velocity, using the first deviation from the vertical projectile motion, the 
consistency of the given model is determined. 

Mathematical preliminaries     

We recall the following basic definitions and properties of fractional calculus theory 
which shall be used in this paper [1-4], [13]. 

Definition 1. A real valued function (t), t > 0 is said to be in the space 𝐶𝜆,𝝀∊ R if 
there exists p > l, such that f(t) = 𝑡𝑛𝑓1 (t) where 𝑓1 (t) ∊ C [0,∞)  and it is said to be in the 
space 𝐶𝑛, ifand only if 𝑓𝑛(𝑡) ∊  𝐶𝜆 , n ∊ N. 

Definition 2. The Riemann-Liouville left handed fractional integral operator of order 
𝛼 > 0 of a function f(t) ∊ 𝐶𝜆,   𝝀>-1 are defined by: 

 

𝑅𝐿 
0  

𝐼𝛼 𝑓(𝑡) =
1

Γ(𝛼) ∫ 𝑓(ť) (𝑡 − ť))𝛼−1 𝑑ť
𝑡

0+
 

𝑅𝐿 
0  

𝐼0 𝑓(𝑡) = 𝑓(ť) 

 
 
By definition, Γ(𝛼)Euler's Gamma function. Let t ∊ [a, b] ⊂R and function f (t) is 
Lebesgue integrable in [a, b]: f (t) ∊ L([a,b]) Also, in this case it can be defined the left 
fractional Riemann-Liouville integrals by the previous equations in the form f𝑅𝐿 

0  𝐼𝛼 𝑓(𝑡) , 
using replacement 0 → a  in the lower bound of the integrals. 

Especially important is the relation: if 𝛼→1, then Γ(1 − 𝛼) → ∞. Basic properties 
of the Riemann-Liouville left handed fractional integral operator, for 𝛼,𝝱≥0, t > 0 and 𝛾 > 
-1 are: 
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𝑅𝐿 
0  

𝐼𝛼  
𝑅𝐿 
0  

𝐼𝛽 𝑓(𝑡) =  
𝑅𝐿 
0  

𝐼𝛼+𝛽 𝑓(𝑡) 

𝑅𝐿 
0  

𝐼𝛼 𝑡𝛾 =  
Γ(𝛾 + 1)

Γ(𝛾 + 𝛼 + 1)  𝑡𝛼+𝛾 

Definition 3. The left handed fractional derivative of (t) in Caputo sense is defined by 
relations: 

 
𝐶 
𝛼  𝐼𝛿  f( t) = 1

Γ(𝑛−𝛿) ∫ 𝑑ť (𝑡 − ť))𝑛−𝛿−1 𝐷𝑛 𝑓(𝑡)𝑡
0 |𝑡=ť 

 

𝐷𝑛 𝑓(𝑡) =  
𝑑𝑛𝑓(𝑡)

𝑑𝑡𝑛   

 
for n-l<𝛿 ≤n, n ∊ N, t>0, f (t) ∊ 𝐶𝜆 , 𝜆 > -1. Knowing that the Caputo derivatives is described 
over the Riemann-Liouville integrals, and also for them is possible form 𝐶 

𝛼  𝐷𝛿  f( t) . Basic 
properties of the Caputo operators, for 𝛼,𝝱>0, t > 0, n ∊ N,are: 

𝐶 
0  

𝐷𝑛 𝑓(𝑡) =  
𝑑𝑛𝑓(𝑡)

𝑑𝑡𝑛   

 
c ∊ R ⇒ 𝐶 

0  𝐷𝛼     c = 0 

𝐶 
0  𝐷𝛼 𝑡𝛽 = Γ(𝛽+1)

Γ(1+ 𝛽 −𝛼)  𝑡𝛽−𝛼 

Theorem 1. let 0 < 𝛼 ≤ l, and assume that f(t) and g(t) are analytic functions on (a- 
h, a + h). a≥0. Then, 

𝐶 
𝑎  𝐷𝛼[𝑓 (t). g(t)]= t− 𝑎−𝛼 

Γ(1 −𝛼) . 𝑔(a +). 𝑓(𝑡)  - 𝑓(a +) +   𝑓(t). 𝐶 
𝑎  𝐷𝛼[  g(t)] 

+∑ (𝛼
𝑘)𝐷𝑘 [𝑓(𝑡)].

∞

𝑘=1
 𝑅𝐿 

𝑎  𝐷𝑘−𝛼[ g(t)]                                                        (1)   
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At this point, two commentaries are necessary. First, we be kept in mind equation 

     𝛿( t-a) =  lim
𝛼→1

t− 𝑎−𝛼 
Γ(1 −𝛼)                                      (2) 

which is in accordance with Definition 2 In addition, for 𝛼 > 0 [1], valid 
 

𝐶 
0  

𝐷𝛼 ∑
 𝑡𝛼−𝑗−1 
Γ(𝛼 − 𝑗) = 0 ,  𝐶𝑗  ∊ R          (3)                                     

𝑛

𝑘=0

 

In the further discussion, only those sets of functions that avoid the difficulties listed in the 
two previous relations are circumvented (it is assumed that itis possible), and, in the case 
when a = 0. 

Standard variable-mass dynamics and Tsiolkjvsky model with dissipation 

Within the mechanics, one known, the classical problem that is considered, according 
to [10-12] for m= m(t) and v = v(t) is mass and velocity of the body,  𝑣𝑟𝑒𝑙 =   𝑣𝑟𝑒𝑙(𝑡) =
𝑣 −  𝑣𝑒  ,  𝑣𝑒 =   𝑣𝑒(𝑡) is the velocity of the mass added to the exhaust,  𝑣𝑟𝑒𝑙 is the relative 
velocity of the escaping or incoming mass with respect to the center of mass of  the body, 
 𝐹𝑒𝑥𝑡 is the net external force on the body, can be written in the form of  the following 
equation of  the momentum balance (Meshchersky equation): 

 𝑑 𝑚.𝑣
𝑑𝑡

−  dm
𝑑t

 . 𝑣 =  d  𝑣𝑟𝑒𝑙 .𝑚
𝑑t

− d  𝑣𝑟𝑒𝑙
𝑑t

. 𝑚 +   𝐹𝑒𝑥𝑡                    (4)  

The reason for this decomposition in the variable-mass dynamics for both sides of equation 
(4) is: from the equation of the time balance of the momentum, for concrete dynamics, 
subtracted an irrelevant term. 

For constant velocity of separation of a certain mass  𝑣𝑒 =constant, the Earth's 
surface in the gravitational field g, Tsiolkovsky equation with dissipative term  𝑏1 v ( 𝑏1  > 
0), is: 

𝑑 𝑚. 𝑣
𝑑𝑡

−  
dm
𝑑t

 . 𝑣 =  
d  𝑣𝑒 − 𝑣. 𝑚

𝑑t
−

d  𝑣𝑒 − 𝑣
𝑑t

. 𝑚 −  mg −  𝑏1 𝑣                   (5)  

Equation (5) is written in the final form: 
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𝑚.
d𝑣
𝑑t

 =   (𝑣𝑒 − 𝑣) .
d 𝑚
𝑑t

−  mg −  𝑏1 𝑣                   (6)  

The conditions under which equation (6) is solved are: 

V(0+) =  𝑣0 , 𝑚(𝑡) =   𝑚0 - 𝜇1 . 𝑡 , 𝑚(0 +) =   𝑚0  

 𝑏1 ≥ 0,  𝜇1 >  𝑏1                                                                          (7) 

The solution of the equation (6) is: 

𝑣 =  
 𝑚0 . (𝑣0 −

 𝑚0 𝑔
 2𝜇1 −  𝑏1 

 −  𝜇1  𝑣𝑒 
 𝜇1 −  𝑏1  

) 

 (1 −
 𝜇1 
 𝑚0 

.𝑡)
 𝜇1 −  𝑏1 

 𝜇1 

+   𝑔 𝑚0 −  𝜇1 .𝑡
 2𝜇1−  𝑏1 

    +   𝜇1 . 𝑣𝑒 
 𝜇1−  𝑏1 

            (8) 

 
If for the first member on the right side of the equation (8) compute the Maclaurin 
polynomial of degree 2, we have: 

𝑣 =   𝑚0 +   𝑚0 

  𝑏1 
 𝜇1 . (

 𝜇1 −   𝑏1 

 𝑚0 
   𝑣0  − 

 𝑚0  𝑔 

2 𝜇1 −   𝑏1 
 − 

 𝜇1  𝑣𝑒 

 𝜇1 −  𝑏1   

) . (1 +
 𝜇1 −   𝑏1 

  𝑚0 
 𝑡  

+  
 (𝜇1 −   𝑏1 ) ( 2𝜇1 −   𝑏1 ) ( 𝑣0 −   𝑚0  𝑔)

 2 𝑚0 
2  t2) +  

 𝑚0  𝑔 

2 𝜇1 −   𝑏1 
−  𝜇1𝑡

+  
 𝜇1  𝑣𝑒 

 𝜇1 −   𝑏1 
                            (9)  

 
For  𝜇1 → 0, equation (9) expected tends to v =  𝑣0 – gt. The consistency of this model can 
also be demonstrated in the following way. Considered the second order polynomial 
expansion 
V(t) =  𝑣0 +   𝐴1 . 𝑡 +   𝐵1 . t²                    (10)     

in eq. (6), if  𝜇1 → 0,, results are: 

𝐴1  =  
 (𝜇1 −  𝑏1 )  𝑣0 −   𝑚0 𝑔 −   𝜇1   𝑣𝑒 

 𝑚0 
  

 

   𝐵1  =   (2𝜇1 −  𝑏1 ) 𝐴1+ 𝜇1 g 

 𝑚0 
  (11) 

All asimptotics (especially for a member degree two t2 - correction to free fall, in (6) for 
this polynomial expansion can be written in the form −𝜇1  𝐵1 − 0.5( 𝜇1 − 𝑏) 𝐵1   are 
corrects. When  𝜇1 → 0, the equation (9) expected converges to equation (10). 
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Fractional variable-mass dynamics and fractional Tsiolkovsly model with dissipation 

Basic idea-assumption for the fractional variable- mass dynamics presents in this 
paper is: mesoscopic or macroscopic dynamics of momentum balance described using 
Caputo fractional derivatives, which satisfy weak Galilean invariance, bearing in mind the 
equations (1) and (4). Result, for 0<𝛼,𝝱≤1 is time fractional Meshchersky equation: 

  𝑡𝑣 
𝛼−1. (( t−α

Γ(1−𝛼)   . 𝑣0 . 𝑚𝑡) −  𝑚0 + (𝑚𝑡. 𝐶 
0  𝐷𝛼[𝑣𝑡]  ) =

   𝑡𝑚 
𝛽−1. (( t−β

Γ(1−𝛽)  𝑚0   . 𝑣0 ) − 𝑣𝑡 −  𝑣𝑒 − (𝑣𝑡. 𝐶 
0  𝐷𝛽[𝑚𝑡]  ) +   𝐹𝑒𝑥𝑡    

(12) 

where, constants   𝑡𝑣  and   𝑡𝑚  are a fractional time relaxations, respectively, for 
velocity and mass of the body (see First relaxation time   𝑡𝑣   , by [5], represents 
atmospheric characteristics, while tm is a fuel property. The stated characteristic and 
properties are to be independent. In work [5 ] , in equation (10), there is no term of type 

t−α

Γ(1−𝛼), which is a result of Theorem 1. It exists in this paper, as a consequence of broken 

Galilean invariance, although it may be omitted from the technique shown in [10], or 
reformulation of the Caputo fractional derivative. The method presented by the equations 
(10) and (11), which is used below, would remain the same. Rearranging fractional 
Newton's second law for the motion equation variable-mass body dynamics, when 
considering the fractional balance of the velocity and mass is in the spirit of Eq. (4) (i.e. 
removal unnecessary terms). 

Then, Caputo fractional generalization Eq. (5), if 𝛼 = 𝝱,  𝑏𝛼 = constant, in (10), is: 

  𝑡𝑣 
𝛼−1. (( t−α

Γ(1−𝛼)   . 𝑣0 . 𝑚𝑡) −  𝑚0 + (𝑚𝑡. 𝐶 
0  𝐷𝛼[𝑣𝑡]  ) =    𝑡𝑚 

𝛼−1. (( t−α

Γ(1−𝛼)  𝑚0   . 𝑣0 ) −

𝑣𝑡 −  𝑣𝑒 − (𝑣𝑡. 𝐶 
0  𝐷𝛼[𝑚𝑡]  ) − 𝑚𝑡𝑔 −   𝑏𝛼 𝑣          (13) 
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Using the given equation, a fractional Tsiolkovsky model is described. Some solutions of 
this equation will be specially considered. Previous equation, for  𝜇𝛼 =constant, satisfies 
the new conditions: 

                                            𝑚𝑡 =    𝑚0 −   𝜇0 .
tα

Γ(1+𝛼)                                                        (14) 

                                                 𝜇0 >    𝑏𝛼   𝑡𝑚 
1−𝛼                                                 

   
Then (14), multiply by  tα, is 

  𝑘𝑣𝑚𝛼 . (−    𝜇𝛼 𝑣0 tα

Γ(1−𝛼) Γ(1+𝛼)  + (  𝑚0  tα −  𝜇𝛼 t2α

Γ(1+𝛼)) 𝐶 
0  𝐷

𝛼𝑣  ) =

  (−  𝑚0  
Γ(1−𝛼) +  𝜇𝛼  − 𝑏𝛼 tα   𝑡𝑚 

1−𝛼
 ) 𝑣 −   𝑣𝑒  𝜇𝛼 tα   −  (  𝑚0  tα −

 𝜇𝛼 t2α

Γ(1+𝛼))  𝑡𝑚 
1−𝛼𝑔 +    𝑚0 𝑣0 

Γ(1−𝛼) 
                        (15) 

where is: 

   𝑘𝑣𝑚𝛼 = (   𝑡𝑣 
  𝑡𝑚 

)1−𝛼                                                (16) 

The solution of the equation (15), considered asymtotics  𝜇𝛼 → 0, is calculated in the form: 

  
v =  𝑣0 +   𝐴𝛼 

tα

Γ(1+𝛼) +   𝐵𝛼 
t2α

Γ(1+2𝛼)           (17) 

Then, for  𝐴𝛼  and  𝐵𝛼  results are: 

  

𝐴𝛼  =  
 ( 𝜇𝛼  (1 +   𝑘𝑣𝑚𝛼 

Γ(1−𝛼) Γ(1+𝛼))− 𝑏𝛼   𝑡𝑚 
1−𝛼) 𝑣0 −  𝜇𝛼   𝑣𝑒 −  𝑚0   𝑡𝑚 

1−𝛼𝑔

 𝑚0 (  𝑘𝑣𝑚𝛼 + 1
Γ(1−𝛼) )

                       (18) 

 
and 
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 𝐵𝛼  =   2𝜇𝛼   −  𝑏𝛼   𝑡𝑚 
1−𝛼    𝑘𝑣𝑚𝛼 𝐴𝛼+  𝜇𝛼   𝑡𝑚 

1−𝛼𝑔

 𝑚0 Γ(1)+ 𝛼 𝑘𝑣𝑚𝛼 (
1

Γ(1+𝛼) + 1
Γ(1−𝛼)  

1
Γ(1+2𝛼) )

 (19) 

The coefficient of t3α then can be written in the form If , (18) and Eq. (19) tends to 
(11). It should be noticed, also: all asimptotics are correct Constant Ba showing a variable 
mass correction constant, with the case of weak dissipation, for deviation from vertical 
projectile motion in the constant Earth 's gravitational field. 

Basic concepts of mesoscopic physics systems in the paper [14] are: quantum 
coherence (one-particle wave-functions approximation), quantum transport, disordered 
and ballistic systems, samples as 'doubly open" quantum systems, quantum chaos, or 
correlations, fractals and levy flight (or similar motions) [7]. In the opposite, author in the 
work [12], describe the equation of Meshersky (S) for motion of a mesoscopic particles 
considering their sizes, the presence of internal structure and internal processes in them, 
without taking into account explicitly these quantum and others effecG. Of course, it should 
be noted that exists also macroscopic many quantum phenomena [IS]. Regardless ofthe 
size of the particles, this paper introduces time correlations of the atmosphere and fuel on 
its velocity of their motions, and, indirectly, between them. The introduction of correlations 
contributes to the foundation of the suppositions and practices of a body variable mass 
dynamics in the spirit of the solid state theory [1 S]. An example of a macroscopic quantum 
phenomenon at room temperature given in [16]. In addition to the paper [5], this 
circumstance suggests that spatial-temporal correlations are possible at higher 
temperatures. 
 

Conclusion 

The macroscopic mechanical problem of a moving body with variable mass is both 
classical and fundamentally important. A particularly notable case is the Tsiolkovsky 
rocket equation, which plays a key role in optimizing parameters for the operation and 
control of rocket propulsion systems. Building upon this foundation, further 
generalizations of equation (12) are conceivable.  
One such direction involves incorporating space-time correlations in the mechanics of 
mesoscopic particles, akin to those explored in [12]. Another involves accounting for 
strong correlations between external processes and mass variation dynamics, potentially 
within frameworks such as plasma analogies [15].  
The fractional model of variable-mass dynamics presented in this paper offers a novel 
approach to capturing these effects. If validated experimentally—either directly or in 
conjunction with models like those proposed in [12] or [15]—this framework could 
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represent a meaningful advancement in both scientific understanding and technological 
development. 
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