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Abstract

A new mechanical framework is introduced to describe bodies with time-continuous mass
variation, incorporating a functional dependence on mass. In this approach, the dynamics
are governed by momentum balance equations formulated using Caputo fractional
derivatives, which adhere to a weak form of Galilean invariance. The formulation is
particularly focused on the Meshchersky kinetics, accounting for both mass and velocity
changes. As a practical example, this paper presents a novel model for the motion of a
material body with continuously varying mass in a constant gravitational field—Ileading to
a time-fractional version of the Tsiolkovsky rocket equation, augmented by a dissipative
term. Under time-based approximation, deviations from vertical projectile motion are
analyzed to assess the internal consistency of the proposed model.

Keywords: Variable-mass dynamics, Meshchersky equation, Tsiolkovsky rocket equation,
Caputo fractional derivative

Introduction

During about fifty years or so, fractional calculus has attracted much attention due to its
application in various fields of science and engineering. For various applications of
fractional calculus in physics, mechanics etc., see [1-3] and references therein.

Two types of fractional derivatives or integrals, namely Riemann-Louville and Caputo
derivative (both), are basics. Among other things, the Riemann-Louville fractional
derivative of a constant is not zero, and it requires not generally specified fractional initial
conditions. In contrast, Caputo derivative of a constant is zero, and a fractional differential
equation expressed in terms of Caputo fractional derivative requires similar to standard
boundary condition This is one of the reasons, why physicists or engineers prefer Caputo
fractional derivative. In this 22
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regard, are important papers [5-7]. In the work [S] investigated a failing body problem
through the air in view of the fractional derivative approach, it has been demonstrated that
using a dissipative term proportional to velocity is possible to use the Caputo derivative.
Paper [6] contains general discuss about the fractional mechanics, where the time
derivative is replaced with the fractional derivative, in the many cases: the motion of a
body in a resisting medium where the retarding force is assumed to be proportional to the
fractional velocity, also, fractional damped oscillator problem, the fractional harmonic
oscillator problem, fractional forced oscillator problem etc. Authors in [7] carefully
considered an improved version of the Boltzmann-Poisson model for BaTiOs-Ceramics,
lead to correct fractional relaxation meso mechanical velocity description in the case of
time correlations. It is known that the classical mechanics is built upon the two concepts:
inertial reference frames and Galilean invariance [8]. For materials described in the papers
[5-7], the above mentioned does not have to be true [9]. In [9] starting from the Kac-
Zwanzig Hamiltonian model generating Brownian motion, showed how Galilean
invariance is broken during the coarse graining procedure when deriving stochastic
equations, leads to a set of rules characterizing systems in different inertial frames that have
to be satisfied by general stochastic models, which the authors have called weak Galilean
invariance. In papers [S] and [7], phenomena, which are described, by construction, are
within such a model.

Part of the mechanics, which describes the motion of the variable mass body, is a well-
known [10], [11], [12]. In work [12] the Meshchersky equation is obtained on the basis of
the equations of motion of mesoscopic particles. This premise led to the emergence of the
components of acceleration connected with the internal processes in the body. However,
neither the spatial nor temporal correlation of the corresponding physical processes was
considered. In this paper, new mechanical variable-mass dynamics description of the body
with time correlations continual functional dependence is considered. By assumption, in
this case, dynamics of momentum balance described by Caputo fractional derivatives,
which satisfy weak 33
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Galilean invariance. Within this description, independently considering the kinetics of
body velocity and mass.
Especially important is so called the Tsiolkovsky rocket model. For a Caputo

fractional velocity failing body problem through the air, with dissipative term, in this paper,
we study new Caputo fractional continual mass dynamics - the fractional Tsiolkovsky
equation. The appropriate relation of balance of momentums is used. Thus the fractional
Tsiolkovsky equation, in a special case, describes generalization of the model to the body
moves in the neighborhood of the Earth's surface in the gravitational field, with constant
velocity of separation of a certain mass and mass of the body decreases linear in the course
of time [10], pp.110-113, in the case of weak dissipation. Within the time approximation
of the body velocity, using the first deviation from the vertical projectile motion, the
consistency of the given model is determined.

Mathematical preliminaries

We recall the following basic definitions and properties of fractional calculus theory
which shall be used in this paper [1-4], [13].
Definition 1. A real valued function (t), t > 0 is said to be in the space C;,A€ R if

there exists p > 1, such that f{t) = t™f; (t) where f; (t) € C [0,00) and it is said to be in the
space C™, ifand only if f™(t) € C; ,n € N.

Definition 2. The Riemann-Liouville left handed fractional integral operator of order
a > 0 of a function f(t) € C; A>-1 are defined by:

RL e 1 £ Nya-1 gy
0 SO =505 O @y

RL
o P F©=F©)

By definition, I'(a)Euler's Gamma function. Let t € [a, b] CR and function f (t) is
Lebesgue integrable in [a, b]: f (t) € L([a,b]) Also, in this case it can be defined the left
fractional Riemann-Liouville integrals by the previous equations in the form f%L 17 f(t),
using replacement 0 — a in the lower bound of the integrals.

Especially important is the relation: if @—1, then I'(1 — @) — 0. Basic properties
of the Riemann-Liouville left handed fractional integral operator, for a,>0,t> 0 and y >
-1 are:
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Definition 3. The left handed fractional derivative of (t) in Caputo sense is defined by
relations:

$ PR = gy Jo dE €= )"0 DM £ () et

d"f(t)

DO = —

forn-1<§ <n,n e N, t>0, f(t) € C; , A > -1. Knowing that the Caputo derivatives is described
over the Riemann-Liouville integrals, and also for them is possible form Of D? f{ 1) . Basic
properties of the Caputo operators, for a,>0, t> 0, n € N,are:

c ___ df(®
o D= —m

ceR=.D* ¢=0

C Da t'B — r(g+1) tﬁ—a

Theorem 1. let 0 < a <1, and assume that f{t) and g(t) are analytic functions on (a-
h, a + h). a>0. Then,

CDUf O OF fos.9@HfE) - f@H+ FO.5D g0
o (FIFO) S Do) n
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At this point, two commentaries are necessary. First, we be kept in mind equation
. t—-a®
6(t-a)= lim

. (2)
a—-1T(1-a)
which is in accordance with Definition 2 In addition, for & > 0 [1], valid

n

C ta—j—l
D¢ —=0, C; R 3
0 T(a—)) i € 3)

k=0

In the further discussion, only those sets of functions that avoid the difficulties listed in the
two previous relations are circumvented (it is assumed that itis possible), and, in the case
when a = 0.

Standard variable-mass dynamics and Tsiolkjvsky model with dissipation

Within the mechanics, one known, the classical problem that is considered, according
to [10-12] for m= m(t) and v = v(t) is mass and velocity of the body, Vye; = Ve (t) =
vV— U, , UV, = V,(t) is the velocity of the mass added to the exhaust, v,.,; is the relative
velocity of the escaping or incoming mass with respect to the center of mass of the body,
F,,. is the net external force on the body, can be written in the form of the following
equation of the momentum balance (Meshchersky equation):

d mw dm _d v m  d vy
dt a VT T a a Mt Fext (4)

The reason for this decomposition in the variable-mass dynamics for both sides of equation
(4) is: from the equation of the time balance of the momentum, for concrete dynamics,
subtracted an irrelevant term.

For constant velocity of separation of a certain mass v, =constant, the Earth's

surface in the gravitational field g, Tsiolkovsky equation with dissipative term b; v ( b; >
0), is:

dmwv dm = dv,—v.m dv,—v b c
dt at VT dt at T mET ;v ®)

Equation (5) is written in the final form:
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dv dm
m—- = (ve—v).ﬁ— mg— by v (6)
The conditions under which equation (6) is solved are:

V0+) = vy, m(t) = my-pu.t, m(0+) = m,

by =20, uy > by (7)
The solution of the equation (6) is:
Mo (@ mog  _ _Mive
- 0-\0 ou1— by - by + gmo— pp.t + H1-Ve (8)
1= by 21— by H1— by

_H1 H1
AL

If for the first member on the right side of the equation (8) compute the Maclaurin
polynomial of degree 2, we have:

by — b my g Ui >< U — b
1 1 0 1 Ve 1 1
v=myg+ mogytr.|——— vy — — J14+—t
° ° < my ° 2p; — by w1 — by Mo
n (1 — by) (2u3— by) (v — my g) 2) 4 mo g ¢
2ms 2u, — by <
H1 Ve
— 9
p1 — by

For p; — 0, equation (9) expected tends to v = v, — gt. The consistency of this model can
also be demonstrated in the following way. Considered the second order polynomial
expansion

V)= vy + A;.t+ B;.t? (10)
in eq. (6), if u; — 0,, results are:

(Mg — b)) vo — Mog— Uy Ve

A =
1 m

(2u1— b1) A1+ paig
mo

B1:

(11)

All asimptotics (especially for a member degree two t* - correction to free fall, in (6) for
this polynomial expansion can be written in the form —u; B; — 0.5(u; —b) B; are
corrects. When p; — 0, the equation (9) expected converges to equation (10).
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Fractional variable-mass dynamics and fractional Tsiolkovsly model with dissipation

Basic idea-assumption for the fractional variable- mass dynamics presents in this
paper is: mesoscopic or macroscopic dynamics of momentum balance described using
Caputo fractional derivatives, which satisfy weak Galilean invariance, bearing in mind the
equations (1) and (4). Result, for 0<a,B<1 is time fractional Meshchersky equation:

-

_ t
t,* 1'((r(1—a) Vo.mt) — my + (mt.g D[vt] ) =

_ tB
t, B 1((1,(1—_@ my .vo)—vt— U, —(vt.g DA[mt] >+ Foxe

(12)

where, constants ¢, and t,, are a fractional time relaxations, respectively, for
velocity and mass of the body (see First relaxation time ¢, , by [5], represents
atmospheric characteristics, while tm is a fuel property. The stated characteristic and
properties are to be independent. In work [5 ], in equation (10), there is no term of type

1"(t1_—aa)’ which is a result of Theorem 1. It exists in this paper, as a consequence of broken
Galilean invariance, although it may be omitted from the technique shown in [10], or
reformulation of the Caputo fractional derivative. The method presented by the equations
(10) and (11), which is used below, would remain the same. Rearranging fractional
Newton's second law for the motion equation variable-mass body dynamics, when
considering the fractional balance of the velocity and mass is in the spirit of Eq. (4) (i.e.
removal unnecessary terms).

Then, Caputo fractional generalization Eq. (5), if @ = B, b, = constant, in (10), is:

t—OL

a-1 _ C pa — a-1 T —
ty '((r(1—a) Vg.mt) — my + (mt. ; D*[vt] )— tm '<(r(1—a) my .vo)

vt — v, — (vt.g D%*[mt] >—mtg — byv (13)
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Using the given equation, a fractional Tsiolkovsky model is described. Some solutions of
this equation will be specially considered. Previous equation, for u, =constant, satisfies
the new conditions:

o
mt = mgy — Mo.m (14)

1-«a

Mo > ba tm
Then (14), multiply by t%, is

__ Haot® a_ Ha®*) ¢ pa, ) =
k”m“'( r(1-a) F(1+a) +( mo t F(1+a)) o D™ ) -

m _
(_F(lfa)+ﬂa_bata tml a)v_ Ve .uata - (mo t% —

[y 2

1-a Mo Vo
F(1+a)) tm g+ r(1-a) (15)

where is:

Koma = ()" (16)

The solution of the equation (15), considered asymtotics u, — 0, is calculated in the form:

t(x tZ(X
V= U0+ Aam+ B“F(TZO:) (17)
Then, for A, and B, results are:
k - —-a
Aa _ (ta (1+%)_ba tm * Vo= g Ve— Mg tm 1% (18)

1
Mo ( kvma + 7=y

and
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2Ug — by tm ™" kymaAat Ha tm 7%

i R S (19)
mgy @ Kyma (1-(1_,_“) "Ta-a) r(1+2a))

B, =

The coefficient of t3* then can be written in the form If , (18) and Eq. (19) tends to
(11). It should be noticed, also: all asimptotics are correct Constant Ba showing a variable
mass correction constant, with the case of weak dissipation, for deviation from vertical
projectile motion in the constant Earth 's gravitational field.

Basic concepts of mesoscopic physics systems in the paper [14] are: quantum
coherence (one-particle wave-functions approximation), quantum transport, disordered
and ballistic systems, samples as 'doubly open" quantum systems, quantum chaos, or
correlations, fractals and levy flight (or similar motions) [7]. In the opposite, author in the
work [12], describe the equation of Meshersky (S) for motion of a mesoscopic particles
considering their sizes, the presence of internal structure and internal processes in them,
without taking into account explicitly these quantum and others effecG. Of course, it should
be noted that exists also macroscopic many quantum phenomena [IS]. Regardless ofthe
size of the particles, this paper introduces time correlations of the atmosphere and fuel on
its velocity of their motions, and, indirectly, between them. The introduction of correlations
contributes to the foundation of the suppositions and practices of a body variable mass
dynamics in the spirit of the solid state theory [1 S]. An example of a macroscopic quantum
phenomenon at room temperature given in [16]. In addition to the paper [5], this
circumstance suggests that spatial-temporal correlations are possible at higher
temperatures.

Conclusion

The macroscopic mechanical problem of a moving body with variable mass is both
classical and fundamentally important. A particularly notable case is the Tsiolkovsky
rocket equation, which plays a key role in optimizing parameters for the operation and
control of rocket propulsion systems. Building upon this foundation, further
generalizations of equation (12) are conceivable.

One such direction involves incorporating space-time correlations in the mechanics of
mesoscopic particles, akin to those explored in [12]. Another involves accounting for
strong correlations between external processes and mass variation dynamics, potentially
within frameworks such as plasma analogies [15].

The fractional model of variable-mass dynamics presented in this paper offers a novel

approach to capturing these effects. If validated experimentally—either directly or in
conjunction with models like those proposed in [12] or [15]—this framework could
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represent a meaningful advancement in both scientific understanding and technological
development.
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