IOP SClence jopscience.iop.org

Home Search Collections Journals About Contactus My IOPscience

Image charge inclusion in the dielectric sphere revisited

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2012 Eur. J. Phys. 33 1751
(http://iopscience.iop.org/0143-0807/33/6/1751)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 136.206.1.20
The article was downloaded on 17/10/2012 at 14:07

Please note that terms and conditions apply.



http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0143-0807/33/6
http://iopscience.iop.org/0143-0807
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

IOP PUBLISHING EUROPEAN JOURNAL OF PHYSICS

Eur. J. Phys. 33 (2012) 1751-1759 doi:10.1088/0143-0807/33/6/1751

Image charge inclusion in the dielectric
sphere revisited

D V Redzi¢', M S A Eldakli' and M D Redzi¢’

! Faculty of Physics, University of Belgrade, PO Box 368, 11001 Belgrade, Serbia
2 CLARITY: Centre for Sensor Web Technologies, Faculty of Engineering and Computing,
Dublin City University, Collins Avenue, Glasnevin, Dublin, Ireland

E-mail: redzic@ff.bg.ac.rs

Received 30 July 2012, in final form 2 September 2012
Published 2 October 2012
Online at stacks.iop.org/EJP/33/1751

Abstract

Van Siclen (1988 Am. J. Phys. 56 1142) reported a curious property of a
dielectric sphere in the field of an external point charge: the field outside the
sphere generated by the combination of the original charge exterior and the
Kelvin image charge interior to the sphere is independent of the permittivity of
the sphere. In this paper, we simplify and correct the original derivation and give
a detailed analysis of the sources of the field. We also present various checks
for the theory, providing instructive exercises for advanced undergraduates.

1. Introduction

Consider a perfectly conducting sphere of radius a embedded in a homogeneous, isotropic
dielectric of relative permittivity ¢,; a point charge g is set outside the sphere at the distance d
from the centre. If the potential of the sphere is zero, then the Legendre series expressing the
external potential due to the actual (free plus bound) charge over the sphere can be interpreted
in a simple way as the potential due to a single point charge embedded in an infinite dielectric
of the same relative permittivity &, [1]. The Kelvin image charge, as it is usually termed, is
at the distance dx = a?/d from the centre of the sphere and it has the charge gx = —qa/d.
This discovery which, paraphrasing Maxwell [2], seems to have been reserved for the young
William Thomson, later Lord Kelvin, led him in 1845 to the principle of images [3-5], a
powerful method for solving boundary-value problems in electrostatics and elsewhere. More
recently, Van Siclen made a surprising observation about the classical Kelvin image theory for
the conducting sphere: the field outside the grounded conducting sphere remains unchanged
if the conducting sphere is replaced by a dielectric sphere with the Kelvin image charge
embedded in it [6]. Thus, the exterior field generated by the combination of the original
charge exterior and the Kelvin image charge interior to the dielectric sphere is independent of
the permittivity of the sphere; conversely, the field inside the dielectric sphere is independent
of the permittivity of the surrounding medium. This curious result has been generalized to the
spheroidal electrostatic and spherical magnetostatic cases [7-9].
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Unfortunately, Van Siclen’s original argument is somewhat involved and occasionally
erroneous [7]. In this paper, we simplify the argument and show by direct calculation of the
sources of the field how the surprising result reported in [6] comes about. Apart from illustrating
the fact that finding the various possible sources for a given field can be challenging, the present
discussion provides insightful exercises for advanced undergraduates.

2. A point charge outside and the Kelvin image charge inside a dielectric
sphere

Consider a dielectric sphere of radius a, whose relative permittivity is &, embedded in an
infinite dielectric of relative permittivity ¢,; both media are linear, homogeneous and isotropic.
Choosing the origin at the centre of the sphere, we will find the potential of the system, which
is obtained by setting a point charge g outside and the Kelvin image charge gk inside the sphere
at the respective points with Cartesian coordinates (0, 0, d) and (0, 0, dx) on the positive z
axis in the following way. First, we solve separate problems of the point charge ¢ outside
(no free charges inside) and a point charge ¢’ at the point (0, 0, ) inside the sphere (no free
charges outside it). Then the sum of the respective solutions for the potentials, W, and W,
is the potential W of the system in the case where both ¢ and ¢’ are present, ¥ = W, + W,,.
Eventually, making the Kelvin image charge substitutions ¢’ = gk and « = dg, we obtain the
required potential.

2.1. The dielectric sphere in the field of the external charge q

Taking into account the azimuthal symmetry of the problem, the potential \I/;L at the point with
spherical coordinates (r, 6, ¢) outside the sphere is given by

oL 4
9 Amege, R

o
+ZB,r_l_1P1(cosé’), 9]
1=0
where R is the distance between the point of observation (r, ¢, ¢) and the point on the positive
z axis with Cartesian coordinates (0, 0, d) where the charge ¢ is located, R = |r — dk|, and B,
are the unknown coefficients. Also, at any point inside the sphere the resultant potential is of
the form

= ZA,rIPl(cose), )
1=0
where A; are the unknown coefficients. Now using the well-known expansion of 1/R in
Legendre polynomials [10]:

1 1 = r=1d! r>d
i = P(cos@){ 1 7 3)
R /r2—2rdcos6 + d? ; ! a1, r<d,

from the continuity of the electrostatic potential as well as from the continuity of normal
component of D on the sphere r = a we find

1 e lqad},
B=—|(1-2 : 4)
4 e &) el +e.(+1)]d

__1 4
= 4 epe, drtt
The above results for ¥, are well known and are reached in various ways [1, 6, 11] and recast
in various forms [12].

+ Bja 21, (5)
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For the sake of completeness, we discuss briefly the so-called conducting limit of the
above results, recalling that the field of a region whose permittivity tends to infinity remains
unchanged if the region is replaced by a perfectly conducting region of the same shape and
size, and of the same total free charge3. Indeed, when &, — oo we have that

By =0, (6)

(note that this is so regardless of the value of ¢/) and

B d, 1> 0, 7
= 47T808rqK K ~ %)
and also that
1 q
- z 8
0 drepe, d ®)
A} — 0, [>0. 9
Thus, when ¢/ — oo we infer that
1 gq 1 (—qx) I gk o (dx )
' = — — | P ), 10
@ 4 epe, R + 4epe, T + 4 epe, 1 ; r 1(cos ) (10)
1 1 —
v 4= (Z4x). (11)
4 4epe,d  Admeps, a

in agreement with the fact that for the field outside there are two classic point images for an
uncharged conducting sphere, the Kelvin image and —gx at the centre of the sphere, and with
the fact that the potential inside the uncharged sphere is given by the right-hand side of limit
(1) [1].

(Instead of recognizing that the By term is zero regardless of the value of ¢/, it is sometimes
incorrectly stated that B; — (1 /471808,)qu1[< for all I, which leads to the wrong conclusion
that when ¢, — oo the dielectric sphere approaches a grounded conducting sphere with the
Kelvin image charge for the field outside the sphere [6, 11, 13]. Similarly, some authors
state that in the conducting limit a prolate dielectric spheroid in the field of an external
point charge g approaches a grounded conducting spheroid in the field of ¢ (i.e. the potential
inside the dielectric spheroid approaches zero) [14], which is of course erroneous [15, 16]. It
seems that the conducting limit is an active source of errors, especially the zeroth-order terms
[17-19].)

As another check, let the radius of the sphere a grow so that the distance 1 = d — a of the
charge g from the surface of the sphere remains constant. Our system thus becomes a point
charge ¢ in front of a planar interface, at the distance 4 from it. It can be verified that in this
limit (@ — 00, h = d — a = const), taking into account that a — a? /d — h and being careful
with the By term,

L g 1 -
v — = —,
4 4mepe, R dmeps, (8, +€.) R
1 2 1 1 ,— &
w- q q (er—¢)4q

— - = ,
q 4meg (6, +€) R 4mepe, R 4mwepe, (6, +€) R

where R* is the distance from the point symmetrical to g relative to the interface to the point of
observation, as they should (cf, e.g., [20]). A little reflection reveals that the second terms in

3 Note that this last condition need not apply in the case of regions extending to infinity.
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the resulting formulae for potentials in two dielectric media separated by the planar interface
are due to bound charges over the interface [20, 217~

2.2. The dielectric sphere in the field of the internal charge q'

Following the same line of argument, introducing mutatis mutandis primed quantities whose
meaning is analogous to that of the corresponding unprimed quantities, we have that

o0
wh= ZB;r_l_lPl(cosG), (12)
=0

v, = 47[808 R/ ZArP,(cosG), (13)

where R’ is the distance from the 1nternal point (0, 0, «v) on the positive z axis where the charge
¢’ is located to the point of observation. Using the expansion of 1/R’ in Legendre polynomials:

1 1 > —1—1,1 >

Y = ZPI(COS@) rl _thl 7 e (14)

R 2 —2racos +a? ro ) r<a,

and the boundary conditions, we obtain that the expansion coefficients A} and B; are given by
1 gd@+1)

4meo (el +e,(1+ D]

B =

15)

A = ——47;08; dala™ "+ Bla7?! (16)
As simple checks, for a conducting sphere, s, — 00, B, = ¢'/4msgée, (regardless of the
value of &), B, — O for [ > 0, Aj = ¢'/4mwegs,a and A} — 0 for [ > 0, as it should be. Also,
for the dielectric sphere embedded in an infinite perfect conductor, &, — 00, B, — 0 (thus the
potential of the infinite conductor is zero) and A] — —(q'/4mege.)a'a=*'~" consistent with
the fact that for the field inside the sphere there is a single image charge—g'a/« at the point
0,0, az/a) on the z axis.
Note that the above expressions for the potentials \Il;’q,_ can also be reached as limiting
cases from the solutions to the corresponding problems in the prolate [15, 22] and oblate [23]

spheroidal geometries.

4 Another instructive check would be to let the point charge g recede to infinity, d — 00, and at the same time have
lg| grow so that g/d> remains finite, which corresponds to the dielectric sphere lying in a finite uniform externally
applied electric field, Ey = —kgq/4mege,d>. In this limit, we obtain

p-r

VS — —Eg-r+ 5
dmege, 1

+R,

where

€. —& 3
p = 4meoe, a’Ey,
el + 2¢,

r

is the electric dipole moment of the sphere and 8 = limy, |4 00 (¢/47 €0£,d) is infinite constant,

v, - -

3e,

o + 2 E() r—+ N.

Interestingly, the above procedure, while not ‘legal’ (our results for W and W~ are obtained under the proviso that
the sources of the field are localized in a finite region of space) gives the correct results for the potentials of a dielectric
sphere in a uniform externally applied field [1], if we ignore the infinite constant ¥, of course. (As can be seen, we
can evade R if we start from the dielectric sphere in the field of two charges, ¢ at dk and —g at —dk, and then take the
limit d — 0o, |g| — oo so that g/d? remains finite.) Note that no infinities arise in the preceding check (the a — oo
limit), despite bound charges extending to infinity over the planar interface (cf [21]).
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2.3. The dielectric sphere in the field of q outside and gk inside the sphere
As pointed out above, when both charges ¢ and ¢’ are present at their respective points outside
and inside the dielectric sphere, the potentials outside W™ and inside W™ are given by
+_ gt + - — v -
U=+, U =0+ 17
Now making the Kelvin image charge substitutions ¢’ = gx = —qa/d, « = dx = da*/d, after

a simple but somewhat cumbersome calculation, we obtain surprisingly simple expressions
for the corresponding potentials

+ 1 q 1 gk dx !
\J =+ — E — ) Pi(cosB), (18)
r r

K™ 4n goer R 4mege, prs

_ 1 g 1q°°<r

!
=— P 0), 19
K7 dmepel Ry dmeoeld pr d) 1(eosd) (19)

where the subscripts K serve as a reminder that \Ifg , Wy and Ry refer to the case when ¢’ is
replaced by the Kelvin image charge. Taking into account expansions (3) and (14), ¥ and
W can be recast as

+_ 1 q 1 qx

K dmepe, R dmeoe, Ry

(20)

1 oa 1 g

K" drmepsl R 4dmepsl R
This is Van Siclen’s surprising result: the potential outside the sphere is independent of its
electric permittivity and remains unchanged when the dielectric sphere is removed (leaving
the Kelvin image charge inclusion gk in a spherical cavity), or it and gk are replaced by a
grounded conducting sphere, or both g and gk are in an infinite dielectric of relative permittivity
&,. Conversely, the potential inside the sphere is independent of the electric permittivity of
the surrounding medium and remains unchanged when the surroundings are removed (leaving
the charge ¢ at (0,0, d) in vacuo), or the surroundings and g are replaced by the perfect
conductor, or both ¢ and gk are in an infinite dielectric of relative permittivity /. (Note that
these independence properties also apply in the case where another point charge is embedded
at the centre of the sphere for the fields both outside and inside, and the potential outside (but
not inside) the sphere.)

2n

3. The charge distribution

In what follows we demonstrate how the simple potentials (20) and (21) come about by finding
their sources.

First we find the distribution of volume bound charges in the problem considered. Using
the law

V.-P=—p, (22)
where pj is the volume density of bound charge, and the well-known relation
1
v? = —4xs(r—r), (23)
Ir —r|

and also taking into account that both media are linear, homogeneous and isotropic, from
expressions (20) and (21) we find that there are two bound point charges in our problem,
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[—(e.—1)/ellgk at dKIE and [— (e, — 1)/¢e,]g at dk. The two bound charges reside at the same
points as the corresponding free charges gk and g, respectively. Obviously, there are no other
volume bound charges in our system.

The total surface density of bound charge is obtained from the boundary condition

Py —Py) -n=—oy, (24)

where n is the unit normal vector at a point on the boundary surface pointing from side 1 to
side 2 of the surface. A little reflection reveals that contributions to oy, from dielectrics 1 and
2, o1, and oy, respectively, are given by

P -n=oy, (25)

P2 ‘N = —07p. (26)

Applying conditions (25) and (26) to the spherical boundary r = a, using equations (20)
and (21) we find the surface densities of bound charges

-1 !
o(r=a) = —¥qm Y@+ 1)(3) Pitcoso). @7
r =0
s —1 !
op(r = a) = @s—,)qm 3+ 1)(3) Pi(cos ), (28)

=0
where o, and o), are the contributions from the interior (¢)) and exterior (e,) dielectric,
respectively. Using expansion

o0 a 1 (1 _ az/dz)
A D) Pileost) = : 29
g( +1)(5) Peoso) T 09)
which applies for a < d (cf, e.g., [24])3, equations (27) and (28) can be recast as

’ (5/ _ 1) 1 (1 _ a2/d2)
so=-" : 30
%(r=a 4 q47‘rad [1 —2(a/d)cos @ + a2/d?]3/? (30)

r— 1 1 1— 2 d2

op(r=a)= e~ D (-ajd) 3D

er amad [1 — 2(ajd)cos6 + a2 Jd2 2"
Now recall two identities which are essential for our argument.

Let a charge —Qa/d be distributed over the sphere r = a with surface charge density
(1 —a*/d*)

o0) == T = 2a/d) cosf + 22T

(32)

5 A ‘physical proof’ of expansion (29) would be to calculate the surface density of free charge over a grounded
conducting sphere in the field of ¢ from equation oy = 7508,(3\P;/3r)r=a using expressions (20), (14) (with of
course « replaced by dk) and (3), which gives

C—_ 1y ay!
op(r=a) =" g(zw D(5) Pitcoso).

or
q (1 —d*/d%)
dmad [1 —2(a/d) cos @ + a?/d?13/2’
depending on which expressions for 1/R and 1/Rj (via Legendre polynomials or via the law of cosines, respectively)
are used in the calculation. True, the physical proof appears somewhat cumbersome when compared to its elegant
mathematical counterpart (cf, e.g., [24]). Incidentally, it seems to be attractive for students when they assimilate
mathematics from live physical problems. For example, the concept of §-sequence (the weak limit) is vividly
illustrated in various physical contexts (cf, e.g., [25, 26]).

of(r=a) =
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where, as before, a < d. Then the following identities apply for the potential of the charge
distribution (32) outside and inside the sphere in vacuo:

__9 (1—a’/d%)
1 %‘ 4rad [1=2(a/d) cos 0/ +a* |22 , 1 (—Qa/d) 33)
dreg Jrea Ir—r| 4meo |r — (a2)d)k|
when the point of observation r lies outside the sphere r = a, and
__0 (1—a?/d%)
1 %‘ Imad [1—2(a/d) cos 0/ +a® |2/ , 1 -0 (34)
deq S r—r deo |r — dk|

when r lies inside the sphere » = a; dS is an infinitesimal element of area of the sphere. The
above identities are well known in the context of the image solution to the classical electrostatic
problem of a point charge outside a conducting sphere at zero potential in vacuo (cf, e.g., [20,
24]). While we introduced them in the language of physics, involving charges and potentials,
it should be stressed that they are purely mathematical identities that need not have a physical
interpretation. For the sake of completeness, a simple proof of identities (33) and (34) via
Green’s second identity is sketched in the appendix.

Now we can return to our original task of demonstrating how the potentials (20) and (21)
come about. Comparing equations (30) and (31) with equation (32), and making use, mutatis
mutandis, of identities (33) and (34), it follows that the distribution of bound volume and
surface charges determined above, together with free point charges ¢ and g, indeed gives rise
to simple potentials W} and Wy .

4. Conclusion

In this paper we have presented a thorough analysis of the surprising observation reported in
[6]: for a dielectric sphere in the field of a point charge g exterior and the Kelvin image charge
gk interior to the sphere, the potential outside (inside) the sphere is independent of the electric
permittivity of the internal (external) medium. By finding the distribution of bound charges,
we showed how the curious Van Siclen’s result came about. Also, the so-called conducting
limit checks for the theory are presented and some familiar results demonstrated in a new way.

Acknowledgments

The authors thank the referee for valuable suggestions for improving the presentation. DVR
would like to acknowledge the support of the Ministry of Science and Education of the
Republic of Serbia, project no. 171029, for this work.

Appendix

Consider two point charges Q and Qx = —Qa/d in vacuo, lying on the positive z axis at
the points dk outside and (a®/d)k inside the sphere of radius a with its centre at the origin,
respectively. As is well known, the potential for this system,
B 0 1 Ok

Ameo |r — dk| 470 |r — (a?/d)K|
vanishes on the sphere r = a. Thus the potential (A.1) is Q times the corresponding Green’s
function for the sphere satisfying the Dirichlet boundary condition.

w(r)

(A1)
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Now recall that Green’s second identity implies the following representation formula for
a well-behaved scalar function of position ®:

1 V2o (r 1 100 a (1
o =— [ Y2y, LLTLI® o 0 (1N ag (a2)
4 Jy« N 4 Joo | N on on’ \ M

where i = |r — 7/|, which applies in the case where the point of observation r lies within
the volume V* bounded by the closed surface $* [1, 20]. Substitute now the potential ¥ from
equation (A.1) for ® in equation (A.2) and apply the modified equation to the volume V*
outside the sphere r = a. Taking into account that W vanishes on the sphere r = a and also
that it is regular at infinity, after a simple calculus we obtain identity (33). Similarly, applying
the same procedure to the volume V* within the sphere r = a, identity (34) follows.

Note that instead of the above heuristic method of proving identities (33) and (34),
via Green’s equivalent stratum [20, 27], more general methods of finding the potential of a
spherical shell of given surface density can be used [24, 281°.
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